
SDK™-2920
SYSTEM DESIGN KIT

USER'S GUIDE

Order Number: 162418-002

Copyright © 1981 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

http://www.computer-museum.net

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7404.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug-A-Bubble
CREDIT intel MCS PROMPT
i Intelevision Megachassis RMX/80
ICE Intellec Micromainframe System 2000
iCS iRMX Micromap UPI
i m iSBC Multibus
Insite iSBX Multimodule

A461/1081/3K SVP

http://www.computer-museum.net

REV. REVISION HISTORY DATE

-001 | Original issue.

-002 | Minor technical changes.

2/81

10/81

iii

http://www.computer-museum.net

http://www.computer-museum.net

PREFACE

This is the user's guide for the SDK-2920 Design Kit. Included within this guide are
descriptions of 1) ROM resident monitor, 2) development board electronics and 3)
applications board usage. Before using this manual you should be familiar with
2920 operation and program development techniques. Additional information is
available in the following Intel publications:

• SDK-2920 System Design Kit Assembly Manual, Order No. 162421

• 2920 Assembly Language Manual, Order No. 9800987

• 2920 Simulator User's Guide, Order No. 9800988

• 2920 Digital Signal Processor Applications Handbook

SERVICE ASSISTANCE

If, following assembly, you cannot get your kit to operate satisfactorily, the Intel
Technical Support Center "Service Hotline" is available for assistance. This
service is provided during the hours of 8:00 A.M. to 5:00 P.M. (Mountain Time),
Monday through Friday. The toll-free Hotline telephone numbers are:

(800) 528-0595 when dialing outside Alaska, Arizona and Hawaii

(602) 869-4600 when dialing from Alaska, Arizona or Hawaii

The Hotline is intended expressly to help you get your kit running and is not
intended to assist you in circuit designs or applications. Telephone assistance is
limited to one call per problem. If a problem cannot be remedied over the telephone,
you may, at your discretion, return your assembled kit to Intel for repair. To return
your kit, a Return Authorization Number must be obtained from the Technical
Support Center prior to sending in your kit. Also, either a purchase order number
for the repairs must be furnished to the center or a money order (no personal checks
please) must be included with the kit being returned. Repairs resulting from
defective components supplied with your kit will be done at no charge, and all
prepayments will be refunded. Repairs necessitated as a result of customer error,
damage or misuse will be billed at a fixed, flat-rate charge which will be quoted by
the Technical Support Center.

NOTE
The Technical Support Center will not repair an SDK-2920 Kit that has
been modified and, when circuitry has been added to the user design
area, may request that the circuitry be disconnected prior to submitting
the kit to the center for repair.

v/vi

http://www.computer-museum.net

http://www.computer-museum.net

CHAPTER 1
GENERAL INFORMATION PAGE
Introduction 1-1
Uses for the SDK-2920 Design Kit 1-1
Compatibility with Design Aids 1-1
Specifications 1-2

CHAPTER 2
PHYSICAL DESCRIPTION
Introduction 2-1
Development Side 2-1
Applications Side Physical Description , 2-3

CHAPTER 3
KEYPAD MONITOR
Introduction 3-1
Monitor Power Up 3-2
RESET . 3-3
Editing Programs 3-3
Loading Programs 3-9
Converting Number Bases 3-19

CHAPTER 4
INSTRUCTION SET
How To Use This Chapter 4-1
Sequence Field 4-1
ALU Field 4-1
Destination Field 4-4
Source Field 4-5
Shift Field 4-5
Analog Field 4-6

CHAPTER 5
PERIPHERAL INTERFACES
Introduction 5-1
Serial Transfer Port 5-1
Development System Interface Connections 5-2
Printer Interface Connection 5-3
Object Code Output Format 5-4
Cassette Interface 5-5

CHAPTER 6
APPLICATIONS SIDE PAGE
Example of 2920 Application 6-1
Power Supplies 6-2
2920 Clock Inputs 6-2
Reference Voltage 6-4
Digital Outputs 6-4
Access to 2920 I /O Pins 6-4
Input and Output Circuit Considerations 6-5
Output Circuit Considerations 6-7
Sample Program 6-7
Sample Program Listing 6-8
2920 Socketing Procedure 6-9

APPENDIX A
POWER REQUIREMENTS
APPENDIX B
COMMAND SUMMARY

APPENDIX C
ERROR MESSAGES
APPENDIX D
TWO'S COMPLEMENT DATA

HANDLING IN THE 2920

APPENDIX E
DISCUSSION OF CARRY AND

OVERFLOW CONDITIONS

APPENDIX F
BIT PATTERNS OF THE 2920

ASSEMBLY LANGUAGE
MNEMONICS

APPENDIX G
HEXADECIMAL/BINARY

CONVERSION TABLE

http://www.computer-museum.net

TABLES

TABLE TITLE PAGE
1-1 Specifications 1-2
3-1 Conversion Limits 3-20
4-1 Constant Codes 4-5
4-2 Scaler Codes 4-6
6-1 Power Requirements 6-2
6-2 Maximum Clock Frequencies 6-3

ILLUSTRATIONS

FIGURE TITLE PAGE
2-1 Development Side 2-1
2-2 Key Switch Arrangement 2-2
2-3 Display Format on LED Filter 2-2
2-4 Applications Side 2-3
3-1 Monitor Structure 3-1
3-2 Command Interactions with

Instruction Memory 3-2
3-3 Instruction Fields and Legal Entries . . . 3-5
3-4 Display Panel 3-6
3-5 LOAD Command and Display Tree 3-9
5-1 Peripheral Interface Locations 5-1
5-2 RS-232 and Current Loop Pin

Assignments 5-2

FIGURE TITLE PAGE
5-3 Baud Rate Selection Jumpers 5-2
5-4 Typical Output File in

Hexadecimal Format 5-4
5-5 Cassette Interface Hookup Locations . . . 5-5
6-1 Applications Side 6-1
6-2 Clock Inputs 6-3
6-3 2920 Jumper Pins 6-5
6-4 Aliasing Considerations 6-7
6-5 Sample Program Input and

Output Waveforms 6-8

V l l l

http://www.computer-museum.net

CHAPTER 1
GENERAL INFORMATION

Introduction

This is the user's guide for the SDK-2920 Design Kit. Now that you have completed
the assembly and initial checkout of your SDK-2920, this guide will provide insight
into the operation and function of the kit and also will explore applications that can
be implemented either off-board or within the user design area.

Uses for the SDK-2920 Design Kit

Capabilities of the kit include breadboarding applications, assembling 2920
programs, editing programs, programming the 2920 EPROM, communication with
development systems, cassette storage of programs, listing to a printer, and
number conversion.

Breadboarding . The breadboard is used to develop circuits for evaluation or for
prototype applications. Components are supplied for several real-time applications.

Assembling and Edit ing. The edit feature includes an assembler, disassembler,
hexadecimal display, symbolic 2920 instruction display, and single keystroke entry
of many 2920 instructions fields.

2920 EPROM Programming . The development board includes a zero insertion
force socket plus the necessary controls to program the 2920 EPROM. In addition,
before programming the EPROM, the SDK-2920 Design Kit checks to verify correct
socketing of the 2920 and displays warnings if your program contains possible
error conditions.

Communicat ions. , The SDK-2920 Design Kit interfaces with Intel Development
Systems to pass 2920 object and source programs. Cassette storage capability for
2920 programs is provided as are provisions for printing 2920 programs on local
terminals or printers.

Number Convers ion. The kit provides a number conversion program to convert
between binary and decimal.

Compatibility With Design Aids

Applications software for the 2920 can be designed and debugged by using an
Intellec Microcomputer Development System, the 2920 assembler, software
simulator, SPAS-20 compiler, and a UPP 102 or 103 with an EPROM personality
card and adapter socket. Transfer of 2920 software between the SDK-2920 Design
Kit and the development system is easily accomplished.

14

http://www.computer-museum.net

General Information SDK-2920

Specifications

Specifications for the SDK-2920 Design Kit are shown in Table 1-1.

Table 1-1. Specifications

CENTRAL PROCESSOR

CPU:
Clock Frequency:

MEMORY TYPE

ROM
RAM

MEMORY ADDRESSING
ROM
RAM

INPUT/OUTPUT
Serial RS-232 or user configurable

9600 baud Cassette interface

PHYSICAL CHARACTERISTICS
Length
Width
Height

8085
6.144 MHz

6K bytes 2732/2716 I
1K bytes

0 through 17FFH
2000H through 23FFH

current loop, transfer rate selectable from 110 to

! POWER REQUIREMENTS (See Appendix A)

Vcc

Vi

Vap1
Vap2

ENVIRONMENT
0 to 50°C operating temperature

16 in.
10 in.

1.75 in. (excluding display)

+5 volts for development and applications
circuitry
+ 12 volts for PROM programming and
RS-232 interface
-12 volts for RS-232 interface
-5 volts for applications circuitry

1-2

http://www.computer-museum.net

CHAPTER 2
PHYSICAL DESCRIPTION

Introduction

The SDK-2920 Design Kit is physically divided into two major areas: the develop­
ment side and the applications side. The function of the development board is to
create and modify 2920 programs, plus program the 2920 EPROM. The function of
the applications board is to provide a convenient prototype area with some basic
circuits in place.

Development Side

The development section consists of key switches, alphanumeric display, serial
port, cassette interface, EPROM programmer, and control monitor (Figure 2-1).

RECONFIGURATION
JUMPERS

Figure 2 - 1 . Development Side

2-1

\

http://www.computer-museum.net

Physical Description SDK-2920

Key Switches

The key arrangement, shown in Figure 2-2, consists of 28 keys separated into two
groups, a group of eight control keys on the left side and a group of twenty data
keys to the right of the control keys. The shift key selects the upper function on the
keys.

CONTROL SECTION 2920 DATA KEYS

RESET

HEX/ASM

INSRT
NEXT

SHIFT

LIST
LOAD

EDIT

DEL
PREV

CONV
CR

KP
KM

+/-
R

L

*
DAR

Y

ADD
C

SUB
8

IN
4

NOP
0

ABS
D

LDA
9

OUT
5

CNDS
1

ABA
E

LIM
A

CVTS
6

CND
2

AND
F

XOR
B

CVT
7

EOP
3

Figure 2-2. Key Switch Arrangement

Display

The LED display lettering is shown in Figure 2-3 and has a length of 24 characters.
The display is covered with a red filter printed with the 2920 assembly field format
(see Chapter 4).

SEQ ft ALU DEST

I I
SRC SHF ANALOG <

2920

System Design Kit

Figure 2-3. Display Format on LED Filter 0228

Peripheral Interfaces

The peripheral sections are the serial port and audio cassette interface. Associated
with the serial port are jumpers to select baud rate, jumpers to select line configura­
tions and space for optional current loop. Chapter 5 describes the serial and
cassette interfaces in detail.

EPROM Programmer

The EPROM programmer is designed to read and program the 2920 EPROM.
Circuitry associated with the EPROM programmer checks to verify correct
socketing of the 2920 before applying voltages to help prevent damage to the device.

CAUTION

The 2920 should never be removed or inserted from the programming
socket while the message "2920 TRANSFER ACTIVE" is displayed.
Remove the 2920 from the programming socket when applying or removing
power to the development side of the SDK-2920.

2-2

http://www.computer-museum.net

SDK-2920 Physica l Descr ipt ion

Control Monitor
The monitor consists of an 8085A processor, ROM, RAM, and a host of support
electronics. The monitor uses the key switches, display, peripheral interfaces, and
EPROM programmer to perform the following functions:

• Edit and assemble 2920 programs

• Program the 2920 EPROM

• Transfer object files to and from audio cassette

• Transfer object files to and from development system

• Transfer source files to a development system or printer

• Convert numbers between binary and decimal

Applications Side Physical Description
The applications section, shown in Figure 2-4, consists of a zero insertion force
socket for a 2920 Signal Processor along with necessary support components. The
board layout was designed to minimize cross talk and other noise. The 74S04 clock
driver will accept one of two crystal inputs or a BNC connector input from an
external frequency source. The board is laid out to accept up to four input and four
output 2912 digital filters, each with their own voltage controlled oscillator (VCO)
clocks. Two 2912's and VCO's are supplied with the kit.
Additional areas are provided for user designed input and output circuitry.

INTEL j2

SDK-2920

Figure 2-4. Applicat ions Side 0229

2-3/2-4

http://www.computer-museum.net

http://www.computer-museum.net

CHAPTER 3
KEYPAD MONITOR

Introduction

The monitor is designed to prompt the user in all areas except EDIT. For example,
the initial display "EDIT LOAD LIST CONV" indicates that only one of the four
keys EDIT, LOAD, LIST or CONV can be pressed. After detecting a valid key
closure the next prompt is displayed showing what options are legal. When EDIT is
invoked, the prompt format is changed to a display oriented edit mode. The basic
monitor structure is shown in Figure 3-1.

POWER UP

INITIALIZATION RESET*

LIST*

EDIT
DISPLAY

PROCESSING

EDITING
OPERATION

EDIT
CONTROLS

2920
EPROM

OPERATION

DEV SYS
DATA

TRANSFERS

CASSETTE
DATA

TRANSFERS
CONVERSION

LIST 2920
MEMORY TO

PRINTER

HEX
DISPLAY

SYMBOLIC
DISPLAY

[-INSERT

[-CLEAR

DELETE

REPLACE

[-ASSEMBLE

DIS­
ASSEMBLE

CURSOR
MOVE

NEXT
INSTRUC­
TION

ADDRESS
CHANGE

READ

PROG/
VERIFY

COMPARE

PREVIOUS
INSTRUCTION

OBJECT
DATA TO

DEV SYS

OBJECT
DATA FROM

DEV SYS

SOURCE
DATA TO

DEV SYS

FILE
SELECTION

CASSETTE
OBJECT
DATA SAVE

CASSETTE
OBJECT
DATA READ

BINARY TO
DECIMAL

DECIMAL TO
BINARY

*Key Switches

Figure 3-1. Monitor Structure 0230

Most monitor commands interact with the instruction memory (Figure 3-2). The
instruction memory is 976 bytes of RAM within the SDK-2920 Design Kit. At power
up the instruction memory is filled with a sample 2920 program which remains
until cleared. Any loading of data into the SDK-2920 clears the sample program.
When instruction memory is cleared it contains 192 occurrences of "4000EF" in hex
or "LDA Y00 Y00 R00 NOP" in symbolic format. Instruction memory can contain
only one program at a time.

34

http://www.computer-museum.net

Keypad Monitor SDK-2920

Commands which modify instruction memory are:

• Edit, clear and modify

• Read 2920 EPROM

• Read object data from development system

• Read object data from cassette

Commands which access data in instruction memory are:

• Program/Verify 2920 EPROM

• Compare 2920 EPROM

• Transfer object data to development system

• Transfer source data to development system

• Transfer object data to cassette

• Edit, display option

• List to printer

2920 DEVELOPMENT SYSTEM CASSETTE

READ SEND SEND READ WRITE
READ PROGRAM COMPARE OBJECT OBJECT SOURCE FILE FILE

SDK-2920 instruction memory

(192 24-bit words for instructions plus 40 words for symbols)

HEX SYMBOLIC |

EDIT LIST

Figure 3-2. Command Interactions with Instruction Memory
0231

Monitor Power Up

At power up, the monitor moves a sample program to instruction memory then
performs a RESET (see next section).

Remove the 2920 from the programming socket before applying or remov­
ing power to the development side.

3-2

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Reset

Function

The RESET command is used to terminate any operation in process. It is both a
normal exit and error exit from any monitor operation.

Invoking Command

The RESET command is a single key which can be pressed at any time. RESET

Operat ion

The dedicated key RESET can be used to initiate a reset at any time. Reset is the
highest priority operation and cannot be prevented by the monitor. Pressing the
RESET key will interrupt any operation in progress and performs the following
functions:

Remove all power to the 2920 programming socket.

Initialize the cassette and RS-232 ports.

Display the monitor title and version number.

Set the baud rate for RS-232 port as selected.

Display the message "EDIT LOAD LIST CONV" and wait for a user key
closure.

Example

Key Display

RESET SDK-2920 Monitor VER x.y
EDIT LOAD LIST CONV

Editing Programs

The editor combines both the edit and assemble functions. The assembler executes
after each 2920 instruction is entered but is not visible unless an error occurs.
Errors detected by the assembler are displayed after each line of text is entered.

Pressing the EDIT key will invoke the editor any time the message "EDIT LOAD
LIST CONV" is displayed. Once invoked, the edit allows the following operations:

• Fill instruction memory with NOP's and clear symbol table (clear command)

• Display and modify symbolic 2920 instructions (symbolic edit or modify com­
mand)

• Display and modify 2920 instructions displayed in hexadecimal (hex edit)

Clear Command

Function

The internal storage of 2920 instruction is cleared to allow entry of a new 2920
program.

3-3

http://www.computer-museum.net

Keypad Monitor SDK-2920

Invoking Command

Key Pressed Display

RESET

EDIT

EDIT LOAD LIST CONV

MODIFY = 1 CLEAR = 2

000 LDA Y00 Y00 R00 NOP

Operat ion

The clear command fills 2920 instruction memory with "LDA Y00 Y00 R00 NOP"
and clears the symbol table. Loading data into the memory from any peripheral
device will automatically execute a clear operation first.

Symbolic Edit (Modify Command)

Funct ion

The symbolic editor allows you to enter 2920 programs and make changes to
existing programs.

Invoking Command

Key Pressed Display

RESET

EDIT

1

EDIT LOAD LIST CONV

MODIFY = 1 CLEAR = 2

Operat ion

To modify the currently displayed 2920 instruction, press one of the data keys on
the right. The display indicates the data insertion point with a blinking character
(cursor position). After the desired data has been entered, the following keys will
cause the assembler to execute.

PREV

NEXT

INSRT

HEX/ASM |(if in symbolic mode)

(Any change to SEQ or address field)

NOTE
If the assembler detects an error, it does not change the operation
requested. For example, if NEXT was pressed, and then an assembler
error was detected, the display continues to the next instruction. The
instruction to which the error applies is not changed. In order to make
the intended change, you must press the PREV key to go back to that
instruction.

3-4

http://www.computer-museum.net

SDK-2920 Keypad Monitor

The control keys used by EDIT are:

Key Name Description

Cursor Right The blinking cursor is moved right one position
unless already at the right edge of displayed
field.

Blinking cursor is moved left one character
until the sequence number is encountered, then
it skips to the left edge of display.

The next 2920 instruction is displayed unless
at end of memory.

The previous 2920 instruction is displayed
unless at beginning of memory.

Send disassembled 2920 instructions to serial
port, followed by symbol table and hex dump of
memory.

Toggle edit mode between symbolic assembly
and hexadecimal format.

Expand the program in memory by one loca­
tion and insert a NOP at current memory dis­
play address.

Contract the program in memory by one loca­
tion and remove the instruction at the current
memory display position.

The right half of the keyboard contains data keys which can be entered at the
blinking cursor position. Chapter 4 describes the 2920 fields and symbols in more
detail. Recommended entries in each field are shown in figure 8-3.

NEXT

PREV

LIST|

HEX/ASM

INSRT

DEL)

Cursor Left

Next instruction

Previous
Instruction

List Memory

Mode Toggle

Insert Instruction

Delete Instruction

S E Q

0 n n

1 n n

A L U

A
A

A
A

S
L
L
x

D

B

B

N

U
D

I

o

D
S

A
D
B
A

M]

R

D E S T

D A R

Y

A

B

C

D

E

F

Y

A

B

C

D

E

F

n

Y

A

B

C

D

E

F

n

S R C

NOTE: "n" is a decimal digit. See Chapter 6 for limitations.

D A R

K M

K P

n

n

Y

A

B

C

D

E

F

Y

A

B

C

D

El
F

n

S H F

R 0 0

•
R 1 3

L 0 1

L 0 2

ANALOG

CVTS

CNDS

EOP

NOP

OUT n

CVT n

CND n

IN n

Figure 3-3. Ins t ruct ion Fields and Legal En t r i es 0232

3-5

http://www.computer-museum.net

Keypad Monitor SDK-2920

The symbolic edit feature allows you to enter a program in symbolic format or
symbolically disassemble binary 2920 instructions. In either case the display will
appear as shown in figure 3-4.

SEQ ALU DEST SRC SHF ANALOG

2920

System Design Kit

Figure 3-4. Display Pane l

One or more positions on the display will blink, indicating the cursor position. You
can change the data at the cursor by pressing a legal data key. The entry of data plus
moving to another instruction causes the assembler to execute. The assembler enters
the new data into instruction memory if no errors were detected. Errors are
displayed for a short period so you need to watch the display during data entry.

NOTE
If any error is detected, the entire instruction is left unchanged. If the
NEXT command is used to invoke the assembler, and an error results,
the NEXT command is still executed, so that the instruction in the
display is the next instruction rather than the one that resulted in the

Example

To enter one instruction containing an EOP at location 005 (assumes RESET was
pressed previously; underline indicates cursor position):

Key Display Comment

EDIT

1
| 0 | 0 | 5 |

EOP

| N E X T |

RESET

MODIFY = 1 CLEAR = 2

000 SUB Y00 KP1 L01 NOP-

000 SUB Y00 KP1 L01 NOP

005 SUB Y01 KP4 R00 NOP-

005 SUB Y01 KP4 R00 NOP-

005 SUB Y01 KP4 R00 NOP-

005 SUB Y01 KP4 R00 EOP-

006 ABS Y01 Y01 L01 CVTS

EDIT LOAD LIST CONV

modify memory contents

cursor left

change sequence

move cursor right

enter EOP

causes last data entry to be
assembled

exit EDIT

3-6

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Another method of modifying location 005 to EOP:

Key Display Comment

EDIT

13
NEXT
NEXT

MODIFY = 1 CLEAR = 2

000 SUB Y00 KP1 L01 NOP

001
002

Move one sequence number at a time
to SEQ 005.

NEXTl 005 SUB Y01 KP4 R00 NOP

005 SUB Y01 KP4 R00 NOP

EOP

NEXT

RESET

005 SUB Y01 KP4 R00 NOP

005 SUB Y01 KP4 R00 EOP

006 ABS Y01 Y01 L01 CVTS

EDIT LOAD LIST CONV

Executes assembler.

Insert an instruction at location zero, then delete it.

Key Display Comment

EDIT

1
INSRT

HID

MODIFY = CLEAR = 2

000 SUB Y00 KP1 L01 NOP-

000 LDA Y00 Y00 R00 NOP-

000 SUB Y00 KP1 L01 NOP

Inserted NOP.

NOTE: Cursor position is indicated by underline.

Hex Edit

Function

Hex edit allows entry of 2920 instructions in hexadecimal format. Entered instruc­
tions are also displayed in Hex format.

Invoking Command

Key Display Comment

RESET

EDIT

1 or 2

EDIT LOAD LIST CONV

MODIFY = 1 CLEAR = 2

(symbolic instruction)

HEX/ASM 000 XXXXXX

Symbolic edit mode.

Hex data displayed.

3-7

http://www.computer-museum.net

Keypad Monitor SDK-2920

Operat ion

The following control keys are used with Hex Edit.

Key Name Description

NEXT

PREV

LIST

INSRT

DEL

Cursor Right

Cursor Left

Next Instruction

Previous
Instruction

List Memory

HEX/ASM | Mode Toggle

Insert Instruction

Delete Instruction

The blinking cursor is moved right one position
unless at the end of displayed field.

Blinking cursor is moved left until the sequence
number is encountered, then it skips to the left
edge of the display.

The next 2920 instruction is displayed unless
at end of memory.

The previous 2920 instruction is displayed
unless at beginning of memory.

Send disassembled 2920 instructions to serial
port, followed by symbol table and hex dump of
memory.

Toggle edit mode between symbolic assembly
and hexadecimal.

Expand the program in memory by one loca­
tion and insert a NOP at current memory dis­
play address.

Contract the program in memory by one loca­
tion and remove the instruction at the current
memory display position.

The display format and legal data entry key is as follows:

Address
SEQ Hexadecimal

xxxxxx 0 n n

1 n n

where "n" is a decimal number zero through nine

"X" is a hexadecimal number zero through F

The control keys can be pressed at any time and perform the same functions in
symbolic edit and hex edit. The data keys are entered at the current cursor position.
If a 2920 program is entered using the hex edit mode, then a symbol table is not
generated until a disassembly is performed by one of the following: LIST, Symbolic
Edit, Transfer source to development system, or LOAD object file to cassette. Before
editing programs entered in hex, both symbol table operation and assembly for­
mats should be studied (see Chapter 4).

NOTE
Error checking in HEX mode is limited to the symbol table; thus errors are
not flagged until the symbol table is generated. Since the hex data is not
assembled, it can contain errors that are not detected by the hex edit. One
way to check for such errors is to switch to the assembly mode (press
HEX/ASM), then back to HEX mode. If errors are present, a three-second
error message is displayed.

3-8

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Example

Clear memory and enter one hex instruction at location 001 (underline indicates
cursor position).

Display Comment Key

EDIT

2
HEX/ASM

NEXT

40223E

MODIFY = 1 CLEAR = 2

000 LDA Y00 Y00 R00 NOP

000 4000EF

001 4000EF

001 40223E

2920 NOP instruction

2920 NOP instruction

location 1 now contains 40223E

Clear memory and enter a three instruction program.
Key Pressed Display Comment

EDIT

2
I HEX/ASM |

4008EF

NEXT

40223E

NEXT

MODIFY = 1 CLEAR = 2

000 LDA Y00 Y00 R00 NOP

000 4000EF

000 4008EF

001 4000EF

001 40223E

002 4000EF

002 5008EF

Edit mode entered

Clear memory

Select hex edit mode

new hex contents of loc 000

new hex contents of loc 001

new hex contents of loc 002 5008EF

Loading Programs

The term is defined as any data transfer into or out of instruction memory and is
invoked by pressing the LOAD key. One additional load operation is possible and
can be invoked by pressing the LIST key. This section will describe the operation of
both keys. The LOAD key will display continuous prompting messages until an
operation is complete. Figure 3-5 shows the LOAD tree including all normal
displays and keys pressed. The normal sequence for a successful 2920 EPROM read
is shown by following the arrows on the leftmost portion of Figure 3-5.

NOTE: Will blink if not
socketed properly
after (CR)

VERIFY 2920 SOCKETED (CR)

I
READ = 1 PROG/VER = 2 CMPR =

1 1
PUSH CR TO PROGRAM

2920 TRANSFER ACTIVE

3

CHECKSUM = 00, (CR)

EDIT LOAD LIST CONV

2920=1 AUX=2 CASS=3

NOTE: Can enter
single character

TO-SDK=1 FROM-SDK=2 ENTER FILE 00 (CR)

START AUX OBJ = 1 SOURCE = 2 TO -SDK=1 FROM -SDK=2

START AUX
THEN (CR)

START CASS START CASS THEN (CR)

(DATA DISPLAYED
AS TRANSFERRED)

(DISPLAY BLANK)

LOAD COMPLETE (CR) 00 LOADED (CR)

Figure 3-5. LOAD Command and Display Tree

3-9

http://www.computer-museum.net

Keypad Monitor SDK-2920

List To Printer

Function

After entering a program into the 2920 instruction memory, the LIST command can
be used to obtain a hard copy or CRT display. LIST command output data is sent to
the serial port at jumper selected baud rate.

Invoking Command

LIST can be activated within EDIT or following a RESET. Prior to pressing the
LIST key all connections should be made to the serial port and the correct baud rate
selected (see Chapter 5).

Key Display

RESET EDIT LOAD LIST CONV

LIST (data is displayed as output)

EDIT LOAD LIST CONV

I EDIT! MODIFY = 1 CLEAR = 2

1 000 LDA Y00 Y00 R00 NOP

LIST (data is displayed as output)
EDIT LOAD LIST CONV

Operat ion

The LIST command causes the following data to be output to both the display and
the serial port:

1) 2920 instruction disassembly

2) Symbol table contents listed in sequential address assigned to each symbol.
The format for each symbol is decimal address followed by symbol.

3) Hexadecimal dump of memory.

After all data has been output to the serial port, LIST returns to the RESET
condition. Pressing the LIST command at 110 baud rate with or without a printer
attached provides a sequential display of 2920 instruction memory.

Example

List a three line program to display and printer. (Assumes program has been
entered previously.)

Key Display Comments

RESET

LIST

EDIT LOAD LIST

000 LDA Y00 Y01

001 LDA Y00 Y01

002 LDA Y00 Y01

003 LDA Y00 Y01

004 LDA Y00 Y01

005 LDA Y00 Y01

CONV

R00 NOP

R00 NOP

R00 EOP

R00 NOP

R00 NOP

R00 NOP

Disassembly of program

plus three instructions

past the EOP.

3-10

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Key Display Comments

000 Y00

001 Y01

040 DAR

4008EF

4008EF

5008EF

4008EF

4008EF

4008EF

Symbol table.

Hex dump of program.

Read 2920 EPROM

Function

Programs stored on the 2920 EPROM can be read into the SDK-2920 instruction
memory by this command. This allows programs to be read, then modified and
written back to the 2920 EPROM

Invoking Command

Key Display

RESET

LOAD

CD
cr

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS = 3

VERIFY 2920 SOCKETED <CR>

READ = 1 PROG/VER = 2 CMPR =3

XXX = CHECKSUM <CR>

NOTE
If the message "VERIFY 2920 SOCKETED" is blinking, then the 2920
is reversed in its socket.

Operation

The 2920 instruction memory is cleared, then EPROM is read until the end of
memory (192 instructions) or an EOP is encountered. EOF terminations always
read three instructions past the EOP. If the EPROM is erased, the message
"EPROM BLANK" is displayed.

CAUTION

Do not insert or remove the 2920 while its EPROM is being accessed.
However, do remove the 2920 when applying or removing power to the
development side.

Example

Read 2920 EPROM into memory then enter EDIT mode.

341

http://www.computer-museum.net

Keypad Monitor SDK-2920

Key Display

RESET

LOAD

01
1

RESET

EDIT

1

EDIT LOAD LIST CONV

2920 = 1 AUX - 2 CASS = 3

VERIFY 2920 SOCKETED (CR)

READ = 1 PROG/VER =2 CMPR =3

XXX = CHECKSUM (CR)

EDIT LOAD LIST CONV

MODIFY = 1 CLEAR = 2

000SUBY00, KP1,L01,NOP

Program/Verify 2920 EPROM

Function

Programs the 2920 EPROM with the data in instruction memory. As each byte is
written to the EPROM, it is read back and verified.

Remove the 2920 from the programming socket when applying or removing
power to the development side.

Invoking Command

Key Display

I RESET

LOAD

m
m
m

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS = 3

VERIFY 2920 SOCKETED <CR>

READ =1 PROG/VER = 2 CMPR =3

PRESS CR TO PROGRAM

2920 TRANSFER ACTIVE

NOTE
If 2920 is reverse socketed then the message 'VERIFY 2920 SOCKETED
= (CR)' begins blinking and is held on display.

Opera t ion

First, the SDK-2920 instruction memory is checked to verify the program does not
contain common errors. Appendix C describes error messages. After any error,
press |CR| to have the system continue checking for errors, or press [o] to bypass
further error checking.

Next, the 2920 EPROM is checked to verify that it is erased or has bits programmed
in the same position as the program in the SDK-2920 Design Kit instruction
memory. If this check fails the message "STUCK BIT XXX" is displayed,
indicating the location of the error. If the stuck bit test passes and the program
contains an EOP, a check is made to verify the 25V supply is working.

If the 25V test passes the programming operation is initiated. After each write
operation to the 2920 EPROM, the data is read back and compared. If an error
occurs then the message "ERR AT LOC XXX" is displayed. Successful compares
are added to the checksum and if the programming operation is successful, then the
message "XXX = CHECKSUM" is displayed.

3-12

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Example

Program a 2920 EPROM then return to monitor.

Key Display Comments

I RESET 1

I LOAD

0

M
OR! or
RESET 1

EDIT LOAD LIST CONV

2920 - 1 AUX = 2 CASS = 3

VERIFY 2920 SOCKETED <CR>

READ=1 PROG/VER=2 CMPR=3

PRESS CR TO PROGRAM

2920 TRANSFER ACTIVE

XXX=CHECKSUM<CR>

EDIT LOAD LIST CONV

if only code check operations desired,
then press RESET

Compare 2920 EPROM

Function

The 2920 EPROM is compared to the SDK-2920 instruction memory.

(CAUTION 1

Remove the 2920 from the programming socket when applying or removing
power to the development side.

Invoking Command

Key Display

1 RESET 1 EDIT LOAD LIST CONV

[LOAD! 2920 = 1 AUX = 2 CASS = 3

[TJ VERIFY 2920 SOCKETED < C R >

[CRI READ=I PROG/VER=2 CMPR=3

[3] XXX = CHECKSUM < C R >

Operation

The 2920 EPROM is compared to the SDK-2920 instruction memory until either an
EOP or an end of memory occurs. If an EOP occurs, then the compare continues for
three more instructions. Miscompares result in the message "ERR AT LOG XXX",
otherwise the checksum is displayed.

3-13

http://www.computer-museum.net

Keypad Monitor SDK-2920

Example

Compare EPROM to SDK-2920 instruction memory then exit.
Key Display

[RESET 1

iLOADl

m
CR

HI
CRl or
RESET!

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS = 3

VERIFY 2920 SOCKETED <CR>

READ = 1 PROG/VER = 2 CMPR

XXX = CHECKSUM <CR>

EDIT LOAD LIST CONV

Read Object Data from Development System

Function

Reads object files created by the resident Intellec assembler or SDK-2920 Design
Kit. The data read is stored in SDK-2920 instruction memory.

Invoking Command

Verify the development system is connected correctly (see Chapter 5).

Key Display

RESET |

lLOAD I

m
m

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS = 3

TO-SDK = 1 FROM-SDK = 2

START AUX

Operat ion

The read routine utilizes the hex object eode output format (see Chapter 5). Initially
it waits for a block start, " : " , and continues to read and add data to the checksum
until an end block is detected. The message START AUX stays on the display during
the load. If no errors are encountered, the message LOAD COMPLETE is
displayed. Possible problems are:

1) Data not received (no error message displayed) — check baud straps, cable,
SDK-2920 straps.

2) Checksum error displayed.

3) Incorrect data format (usually results in a checksum error).

NOTE
Before downloading any program it should be free of assembly errors;
otherwise it should be disassembled and checked for errors.

3-14

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Example

Read one file from development system:

• Connect cable, set baud, set jumpers (see Chapter 5).

Key Display

I RESET

LOAD

m

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS = 3

TO-SDK = 1 FROM-SDK = 2

START AUX

• Type the following on the development system
COPY :FX:f/7e name TO :TO:(CR)
(Where :FX: is the drive number where the file resides.)

• SDK-2920 will display load complete when done.

Transfer Object Data To Development System

Function

Converts data in the SDK-2920 instruction memory into object format and
transfers it to a development system via the serial port.

Invoking Command

Verify the Intellec is connected correctly (see Chapter 5).

Key Display

RESET

LOAD

2

GO

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS =3

TO-SDK = 1 FROM-SDK = 2

OBJ = 1 SOURCE = 2

START AUX, THEN (CR)

Operat ion

The transfer program utilizes the hex object code output format (see Chapter 5).
Since no handshaking occurs, the data is sent even if the serial port is not connected.
During the data transfer, the display will flash with data until the "LOAD
COMPLETE" message appears.

345

http://www.computer-museum.net

Keypad Monitor SDK-2920

Example

Connect cable, set baud, set serial port straps, then enter the following:
Key Display

[RESET

| LOAD

EDIT LOAD LIST CONV

2920 - 1 AUX = 2 CASS = 3

TO-SDK - 1 FROM-SDK = 2

OBJ = 1 SOURCE = 2

START AUX, THEN (CR)

m
m
m
Enter on the development system console "COPY :TI: TO:FX:filename (CR)" (Where
;FX: filename is the device and file to receive the data.)

CR (data appears on display)

LOAD COMPLETE

Transfer Source Data to Development System

Funct ion

The SDK-2920 instruction memory is disassembled and sent to the serial port. This
command allows 2920 programs to be sent to the Intellec for EDIT's and
assemblies.

Invoking Command

Verify the development system is connected (see Chapter 5).
Key Display

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS = 3

TO-SDK = 1 FROM-SDK = 2

OBJ = 1 SOURCE = 2

START AUX, THEN (CR)

I RESET I

[To AD]

m
GO
Operat ion

The SDK-2920 instruction memory is disassembled and sent to the serial port and
to the display. At the end of the transfer the system sends a control Z character to
the Intellec to terminate the transfer.

Example

Connect cable, set baud, set serial port straps as described in Section 5.1
Key Display

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS - 3

TO-SDK = 1 FROM-SDK = 2

OBJ = 1 SOURCE = 2

START AUX THEN (CR)

[RESET I

I LOAD I

GO
GO

3-16

http://www.computer-museum.net

SDK-2020 Keypad Monitor

Enter on development system console "COPY :TI: TO :FX: filename (CR)n

CR1 (display will show data as it is sent)

LOAD COMPLETE

CR| EDIT LOAD LIST CONV

Read Object Data From Cassette

Function

One object file on cassette is read into the SDK-2920 instruction memory. Also, the
symbol table is read along with the file.

Invoking Command

Verify the cassette is connected (see Chapter 5).
Key Display

RESET EDIT LOAD LIST CONV

| LOAD) 2920 = 1 AUX = 2 CASS - 3

[J] ENTER FILE OOfCR)

Q] ENTER FILE (WCR)

ICRJ TO-SDK = 1 FROM-SDK = 2

START CASS

(display will blank and remain blank until transfer is complete)
0

Operat ion

Reading the cassette requires manually starting and stopping the tape (in play or
forward mode) plus the cassette must contain hex object files which match the file
name entered. Legal file names can be any combination of two decimal numbers.
The tape is read until a file name match is found. The data after the file name is
then stored into the instruction memory and symbol table. Successful reads are
followed with the message "XX LOADED". If errors occur, the message "CHECK­
SUM ERROR" is displayed. Usually errors can be overcome by adjusting cassette
volume or checking electrical hookup and trying the operation again. (On some
machines it may not be permissible to have the microphone and monitor jacks in
place at the same time.)

NOTE
When an incorrect file name is detected it is displayed for two seconds
before continuing the search for the file requested.

I CAUTION 1
iiii>iilli#ii^^'ii<»#wfti<«l

Before reading a cassette file, adjust the cassette volume by starting the
cassette, watching the red LED near the cassette connector, and
positioning the volume control so that the LED just begins to flicker. If
the signal level from the recorder is too high, noise errors will be intro­
duced into the system.

Example

Read file 75 from cassette then exit. See Chapter 5 for description of cassette
connections.

347

http://www.computer-museum.net

Keypad Monitor SDK-2920

Key Display Comments

[RESET 1

iLOADl

®
m
m
[CR]

m

EDIT LOAD LIST CONV

2920 - 1 AUX = 2 CASS = 3

ENTER FILE 00(CR)

ENTER FILE 07(CR)

ENTER FILE 75(CR)

TO-SDK = 1 FROM-SDK = 2

START CASS

RESET

If desired, the file number can be

changed or connected before press

ing (CR).

(display will blank after three seconds; wait until it goes blank before
starting the cassette.)

(start cassette in play mode)

75 LOADED

EDIT LOAD LIST CONV

Transmit Object Data To Cassette

Function

One object file plus symbol table is moved from the SDK-2920 instruction memory
to the cassette.

Invoking Command

Verify cassette is connected (see Chapter 5).

Key Display

RESET

LOAD

L3J
m
[CR]

EDIT LOAD LIST CONV

2920 = 1 AUX = 2 CASS = 3

ENTER FILE 00(CR)

ENTER FILE 01(CR)

TO-SDK = 1 FROM-SDK = 2

START CASS, THEN (CR)

Operat ion

The cassette tape must be manually positioned and started in the record mode.
Then the monitor outputs the instruction memory and symbol table to cassette
when CR is pressed. Each block of data sent to the cassette contains a check byte
which is used to verify correct data reception when the data is read back.

CAUTION

Be sure the cassette is positioned past the leader before attempting to
write. On some cassettes the earphone and microphone plugs should not
be plugged in at the same time, because of increased noise levels induced
in the data transfer.

3-18

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Example

Write file 75 to cassette.

1) Connect the cassette as described in Chapter 5.

2) Write the file in program memory to the cassette, and stop the cassette when
message *'XX LOADED <CR>" occurs.

3) Key Display Comments

(RESET! EDIT LOAD LIST CONV

LOAD! 2920 = 1 AUX - 2 CASS - 3

[| | ENTER FILE 00(CR) CR can be entered after one
character has been entered.

[7J ENTER FILE 07(CR)

\E\ ENTER FILE 75(CR)

[CRl TO-SDK - 1 FROM-SDK = 2

[|] START CASS, THEN (CR)

4) Start cassette in record mode. (Allow for leader if at the beginning of the tape).

5) Key Display

|CR| (display is blank during load)

75 LOADED <CR>

RESETS EDIT LOAD LIST CONV

6) Stop cassette.

Converting Number Bases

The convert key is provided to assist with generating constants within the 2920
program. The program will be initially conceived using decimal values then
converted to binary and built in the 2920 using a combination of shifts, adds and
subtracts. The convert routine calculates decimal numbers in the range ± 4194303.

Convert Binary to Decimal

Function

Converts signed integers or fractional binary numbers to decimal.

Invoking Command

Key Display

RESET! EDIT LOAD LIST CONV

CONV ENTER NUMBER

HI B

3-19

http://www.computer-museum.net

Keypad Monitor SDK-2920

Operat ion

The monitor expects the first entry following "B" to be a sign bit. For negative
numbers the sign bit is " 1 " . Following the sign, up to twenty-two " I V or " 0 V can
be entered. When the proper number of binary characters have been entered, a |CR
initiates the conversion. If a binary point is entered, the maximum number size is
reduced to 22 bits. Positive integers over 18 bits require up to one minute to perform
the conversion. Following the conversion, a new number may be entered by
pressing the "B" or "D" keys. Errors cause the message "ENTER NUMBER" to be
displayed again. The only limit on the size of binary numbers to be converted is the
display length.

Example

Convert 0101.101 to decimal, then check to verify binary was entered correctly.

Key Display Comments

| RESET |

|CONV|

|"B1

0101.101

I CR \

[5R]

EDIT LOAD LIST CONV

ENTER NUMBER

B

B0101.101

D+5.62500000

B0101.101000000000000000

Convert prompt

Binary to decimal

Converted number

Convert back to original entry.

A new binary or decimal number can be entered by pressing the "B" or "D" keys.

Convert Decimal to Binary

Function

Converts signed integers or fractional decimal numbers to binary.

Invoking Command

Key Display

I RESET \ EDIT LOAD LIST CONV

[CONV I ENTER NUMBER

Q5] D+

The monitor expects the first entry following the "D" to be a sign change, decimal
point or decimal digit. The maximum and minimum values which can be entered
are shown in Table 3-1. After the number has been entered a "CR" is required to
start the conversion. If too large a value is entered, the conversion process is
aborted and the message "ENTER NUMBER" is displayed.

Table 3-1 . Convers ion Limits

Smallest positive number +.00000023

Largest positive number +4194303

Smallest negative number -.00000047

Largest negative number -4194304

3-20

http://www.computer-museum.net

SDK-2920 Keypad Monitor

Example

Convert 1024.125 to binary then back to decimal.

Key

1 RESET 1

ICONVl

m
1024.125

fCRl

fCRl

Display

EDIT LOAD LIST CONV

ENTER NUMBER

D+

D+1024.125

B010000000000.0010000000

D+1024.12500000

Comments

Conversion wi l l be decimal to
binary

Converted result

Conversion from binary to decimal

A new binary or decimal number can be entered by pressing "B" or "D" following a
conversion.

3-21/3-22

http://www.computer-museum.net

http://www.computer-museum.net

CHAPTER 4
INSTRUCTION SET

How To Use This Chapter

This chapter lists the 2920 instructions and other information regarding entering
instructions with the SDK-2920 design kit. The instructions are grouped according
to the field in which they can appear (left-to-right order on the display).

NOTE
In the examples of instructions, the entry "AAA" refers to any valid
entry in the source field (SRC or "A" field), and "BBB" represents any
valid entry in the destination (DEST or "B" field).

Sequence Field

1 1 1 1
SEQ # 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
ALU 1 1 DEST 1 1 SRC 1 1 SHF 1

1 1 1 I
ANALOG i

I
The sequence field can contain any decimal value between 000 and 191. The
decimal value shown indicates which 2920 instruction is displayed in the
remaining fields. The display changes dynamically as the digits are entered left to
right.

ALU Field

J L
SEQ # ALU DEST SRC ANALOG

t
The ALU field can contain one of the following single-key entries:

ABA ADD LDA SUB

ABS AND LIM XOR

ABA — Absolute Value and Add

The absolute value of the source, after any shifting, is added to the destination and
the result is stored in the destination.

The normal standard carry and overflow apply to ABA, as explained in Appendix
E.

4-1

http://www.computer-museum.net

Ins t ruct ion Set SDK-2920

Examples:

ABA BBB,AAA»R00,NOP

This example takes the absolute value of the contents of AAA and adds that to the
value in BBB, placing the result in BBB.

ABA BBB,AAA,L01,NOP

This example doubles the value from AAA by a left shift one position, then takes
the absolute value of that result and adds it into BBB.

ABA BBB,AAA,L02,CND5

After shifting the value from AAA left two positions, effectively multiplying it by
four, this command adds the absolute value of that result into BBB.

ABS — Absolute Value

This instruction takes the absolute value of the source operand, after any shifting,
and stores it in the destination. If the source was positive, the destination becomes
identical to the source. If it was negative, the destination is the "negative" of the
source, that is, of same magnitude and opposite sign.

ABS never has a carry; it clears the carry flag to zero. A left-shift could cause
overflow.

Examples:

ABS BBB,AAA,R00,NOP

This instruction places the absolute value of AAA into BBB. If AAA were 0.0000
0001, BBB would become 0.0000 0001. If AAA were 1.11111111, BBB would become
0.0000 0001.

ABS BBB,AAA,R01,NOP

This command shifts the value from AAA to the right 1 position, effectively
halving that value, and then places the absolute value of this result into BBB.

ADD — Addition

After any shifting of the source operand, this instruction forms the sum of the
source and the destination operands. The result is stored in the destination.

The normal standard carry and overflow apply, as explained in Appendix E.

Examples:

ADD BBB,AAA,R00,NOP

The sum of the contents of AAA and BBB will be placed in BBB.

ADD BBB,AAA,R01,NOP

The shiftcode R01 will shift the value from right one position, effectively halving it.
This result will be added to the current contents of BBB.

4-2

http://www.computer-museum.net

SDK-292D Ins t ruc t ion Set

AND — Logical Conjunction

After any shifting of the source operand, this instruction performs the logical AND
of the shifted value with the value from the destination, and stores the result in the
destination.

The normal standard carry and overflow apply, as explained in Appendix E.

Examples:

AND BBB,AAA,R00,NOP

The value from AAA will be ANDed against the value from BBB, with the result of
this logical operation placed into BBB.

AND BBB,AAA,R01,NOP

After shifting the value from AAA to the right three positions, this instruction will
AND the result with the value from BBB, storing the result of this logical operation
back into BBB. The effect depends on the sign bit of AAA, since right shifting fills
from the left with whatever the sign bit was, 1 if negative, 0 if positive.

LDA — Load Source To Destination

This instruction writes into the specified destination the value of the source
operand after any shifting.

LDA alwrays clears the carry. A left-shift could cause overflow.

Examples:

LDA BBB,AAA,R01,NOP

This instruction writes into BBB half the value from AAA (because that value is
right-shifted one bit position before the LDA gets it).

LIM — Load Destination With Source Limit

This instruction loads one of two extreme values into the destination, based on the
sign of the source operand. If the source is positive or zero, the destination gets a
plus 1 (0.111111111111111111111111). If the source is negative, the destination gets
a minus 1 (1.000000000000000000000000).

The normal standard carry and overflow apply, as explained in Appendix E. LIM
sets the carry to 0, and can have an overflow only via a left shift.

Example:

LIM BBB,AAA,R00,NOP

The contents of AAA will be -1.0 or +1.0 depending on whether BBB is negative or
not, respectively (zero being non-negative).

4^3

http://www.computer-museum.net

Ins t ruct ion Set SDK-2020

SUB — Subtraction

This instruction subtracts the value in the source operand (after any shifting), from
the value in the destination operand. Subtraction is done by adding the one's
complement of the source and forcing a carry input at the lowest-order bit (see
Appendix D).

The normal standard carry and overflow apply, as explained in Appendix E.

SUB BBB,AAA,R00,NOP

Here the value from AAA is subtracted from the value in BBB, writing the result
into BBB.

If a conditional analog field mnemonic is specified, the SUB instruction operates as
either subtraction or addition. This special operation is discussed in the analog field
section (CND instructions) later in this chapter.

XOR — Exclusive OR Instruction

This instruction forms the exclusive OR of the source (after any shifting) with the
destination, and stores the result in the destination.

Exclusive OR gives a 1 in each bit position where only one of the two values has a 1,
and gives a 0 in those bit positions where both have ones or both have zeroes.

XOR BBB,AAA,R00,NOP

This will form the exclusive OR of the values in these two operands, and the result
will be written into BBB.

XOR is implemented as an ADD with no carries. See Appendix E for further
discussion of carry and overflow for XOR.

Destination Field

1 I 1 1
I SEQ # 1

| " " I
I ALU |

1 1 1 (
I DEST I i ! ! 1 I SRC I MM 1 SHF 1

(i i i
ANALOG I

t
The destination or B-field can contain either the single key entry DAR, or a three-
character label that you define. Labels must begin with one of the characters A, B,
C, D, E, F, or Y; the remaining characters may be any keyboard entry. Up to 40
labels may be defined, corresponding to the RAM locations. The system assigns
locations to labels automatically; the address is only visible if the LIST command
is invoked.

NOTE
The symbol " Y00" is automatically placed in the symbol table when the
editor is entered; thus only 39 labels can be defined by the user. If your
program requires 40 unique labels, therefore, one of them must be "Y00".

4-4

http://www.computer-museum.net

Instruction Set

NOTE
Labels are placed in a symbol table anytime the assembler encounters a
new label or the disassembler encounters a non-assigned field value. If
the table overflows you should either delete the entire table and start
again or re-use existing labels. The entire table can be deleted by
reloading the program from 2920 EPROM, loading from a development
system, or clearing and reentering the program. Alternatively, list the
program to the display or printer, then select labels not currently used or
used in another part of the program.

Source Field

I ' '
SEQ #

1 1 I
ALU

1 I
DEST

1 !
SRC

l 1
SHF

i r i j
ANALOG

The source or A-field can contain the single-key entry DAR, a three-character label
(as discussed previously under destination field), or one of the constants shown in
Table 4-1.

Table 4 - 1 . Cons t an t Codes

CONSTANT
MNEMONIC

KPO

KP1

KP2

KP3

KP4

KP5

KP6

KP7

UNSCALED
VALUE

0

+ .125

+ .250

+ .375

+ .500

+ .625

+ .750

+ .875

CONSTANT
MNEMONIC

KM1

KM2

KM3

KM4

KM5

KM6

KM7

KM8

UNSCALED
VALUE

- .125

- .250

- .375

- .500

- .625

- .750

- .875

-1.0 j

Shift Field

1 I I I I I I 1
SEQ # J ALU j

1 I 1
DEST

1 1
SRC

1 1
SHF

i i r ! j
ANALOG 1

The shift field can contain one of the scaler codes shown in Table 4-2. Each of these
shifts in effect multiplies the source field value by a power of two, where the number
of positions shifted is the power. Shifting is completed before any arithmetic (ALU)
operations are performed.

NOTE
The system issues a warning when a shift code is used with a LIM
instruction, but execution of the LIM instruction is not affected.

http://www.computer-museum.net

Ins t ruc t ion Set S D K - 2 0 2 0

Table 4-2. Sca ler Codes

| SCALER !

CODE

L02

1 L01
ROO

R01

R02

R03

R04

J R05

EQUIVALENT
MULTIPLIER

22=4.0

21=2.0

2°=1.0

21=0.5

22=0.25

23=0.125

24=0.0625

[25=0.03125

SCALER
CODE

R06

R07

R08

R09

R10

R11

R12

R13

EQUIVALENT
MULTIPLIER

26 =0.015625

T =0.0078125

28 =0.00390625

29 =0.001953125

2,0=0.0009765625

211 =0.00048828125

212=0.000244140625

213=0.0001220703125 |

Analog Field

I j f
| SEO #

I ' '
I ALU

i I
DEST

I I I
SRC j

I I
SHF

I 1 I l
ANALOG

The analog field can contain one of the following types of entries:

CNDn EOP NOP

CVTn INn OUTn

CNDS5 CND7, CND6, CND5, CND4, CND3, CND2, CND1, CND0

Each of these analog field entries refers to a single bit, either a bit of the DAR or
(with SUB) the carry bit. CNDS means conditional on the sign bit; the others refer
to specific bit positions in the DAR. CND0 refers to the least significant bit.

If the tested bit is a 1, the operation is performed as written. If the tested bit is a 0,
the operation is either not performed at all or is altered. Only three ALU opcodes
are affected: ADD, LDA, and SUB.

The normal standard carry and overflow apply, as explained in Appendix E. LDA,
however, never has a carry.

NOTE
The CND entries have no effect on the ABS, AND, or LIM operations; a
warning is displayed when CND is used with one of these ALU opera­
tions. When a CND is used with the ABA instruction, the limiting effect
of overflow detection is turned off; it turns on again after EOP or after
an XOR with any CND entry (refer to Appendix E).

ADD Conditional
ADD BBB.AAA.ROO.CNDS

If the sign bit of the DAR is 1, this instruction will add the contents of AAA to the
contents of BBB and store the result in BBB.

If the sign bit of the DAR is 0, then the sum of BBB with zero is placed into BBB,
i.e., no change except that the carry flag is cleared.

4-6

http://www.computer-museum.net

SDK-2920 Ins t ruc t ion Set

LOAD Conditional

LDA BBB»AAA,R02,CND5

If bit five of the DAR is 1, this instruction will get the value of AAA, shift it right
two positions to create lA the value, and put it into BBB, writing over whatever
value was formerly there.

If bit five is 0, the effect is the same as with the conditional add.

SUBTRACT Conditional

SUB BBB.AAA.ROO, CNDO

Conditional subtract is a special operation, requiring information about the
previous carry situation.

• If the carry resulting from the previous ALU operation is a 1, then the subtrac­
tion indicated is performed, i.e., the value from AAA is subtracted from the
value in BBB, and the result is written into BBB.

• If the carry resulting from the prior ALU operation is 0, then the operands are
added instead of being subtracted, i.e., the value from AAA is added to the
value from BBB, and the sum is written into BBB.

The above instruction will set the first bit of the DAR, DAR(O), to the carry output of
the highest order position of the ALU. Then, depending on the carry resulting from
the previous ALU operation, it will perform either an addition or a subtraction.

CVTS, CVT7, CVT6, CVT5f CVT4, CVT3, CVT2, CVT1, CVTO

In order to convert to a digital value from an input sample value in the sample-and-
hold for input, each of these analog field values sets the named bit of the DAR (e.g.,
bit 7 for CVT7) to 1 or 0 based on that input value. Each CVT also sets the next
lower bit (e.g., bit 6 for CVT7) to 1 as part of the conversion process. The process
uses the comparator and the reference voltage (VREF) to decide the sign and the
fraction of VREF which represents the input sample. It is necessary to allow the
DAC to settle between each cycle of conversion. This is achieved by inserting NOP
analog field mnemonics after all CVT's, or placing CVT analog entries only on
every other ALU instruction. Note: At some clock frequencies it may be necessary
to include two NOP's between successive CVT instructions.

EOP — End of Program

EOF signals the end-of-program condition, causing a transfer back to the instruc­
tion in location zero. This analog field entry must be on in a location whose address
is a multiple of four or a warning is issued. (If a program with a misplaced EOP is
executed, the results are unpredictable.) The 2920 instruction words are pipelined in
groups of four. The 2920 will execute three instructions after the EOP before
branching back to location zero.

Overflow limiting is turned on by the execution of an EOP and thus is enabled
during the last four instructions of the program.

4-7

http://www.computer-museum.net

Instruction Set SDK-2920

INO, INt, IN2, 1N3 — Inputs

You use these analog field entries to obtain an input sample from one of the four
input channels. It is generally necessary to use a sequence of several INs in order to
obtain a reliable sample. (The number of INs is a function of the sample capacitor
and the clock rate.) For details on how many IN instructions are necessary, refer to
the 2920 Analog Signal Processor Design Handbook.

NOP — No-Operation

NOP means no-operation for the analog section of the 2920 chip.

4-8

http://www.computer-museum.net

CHAPTER 5
PERIPHERAL INTERFACES

Introduction

Two interface ports are provided with the SDK-2920. One is a dedicated audio
cassette interface and the other can be RS-232 or a current loop. In addition the
serial RS-232 port can be configured as either a printer or Intellec interface. See
Figure 5-1.

DEVELOPMENT SIDE

Figure 5-1. Peripheral Interface Location

Serial Transfer Port

The serial interface port can be configured for a development system, printer, or
current loop device (Figure 5-2).

5-1
http://www.computer-museum.net

•'*E-aiL4-^»Ji«r-'' CSK':- rJxJ-s*+&vi*&\rA "*v:*v-/v; '

SDK-2920 SJ

P e r i p h e r a l In te r faces

RS-232

Pin 2 transmit data
Pin 3 receive data
Pin 4 request to send
Pin 5 clear to send
Pin 7 ground

CURRENT LOOP

Pin 12 transmit data (+)
Pin 13 receive data (+)
Pin 24 transmit data (-)
Pin 25 receive data (-)

1

Figure 5-2. RS-232 and Current Loop Pin Assignments
0236

The connector pin assignment can be changed by using the reconfiguration jumpers
as described in the next two sections. The output/input rate is controlled by the baud
select jumpers which can be set to the seven baud rates shown in figure 5-3.

4

rear A

of •
1 board •»

Figure 5-3. Baud Rat

00 1
fcTo]
00 1
0 0

i 0 0

0 0

0 0

,e Select

110

300

600

1200

I 2400

4800
9600

ion Jumpers 0237

In the example above, 300 baud was selected by placing a jumper across the second
row of connectors. After selecting the baud setting, always press the RESET key to
initialize the baud change.

Development System Interface Connections

The following steps are needed to interface with a development system.

1) Set the baud rate jumper at 1.10 for Series II Development Systems. Set the
baud rate jumper to agree with the setting of the baud rate jumper on the
monitor module card in the 800 Series Development Systems.

5-2

£ 6 « £

http://www.computer-museum.net

SDK-2920 Peripheral Interfaces

t 0 0

2) Position the reconfiguration straps for RS-232 as follows:

W60

W61 A rear

W62 4 f of

W63 I kit

0 0

0 0

0 0

If the receive and transmit pins are reversed on the RS-232, position as follows:

W60

W61 A rear

W62 j f of

,W63 1 kit
0 0

0 0

3) To interface to Series II:

a) Using existing SDK serial port (RS-232) — connect to the serial 1 connector
(J2) on the development system. Development system commands use
:TO: , :TI:

To interface to 800 Series:

a) Use conversion interface connected to the TTY port of the 800. Develop­
ment system commands use :TI:, :TO:

OR:

b) Connect a teletype device to the TTY port, and disconnect your CRT from
the video port. The video port is then free to interface directly to the RS-232
port on the kit. Development system commands use :VO:, :VI:

4) Press RESET key on SDK-2920 Design Kit.

Printer Interface Connection

The following steps are needed to interface with a printer:

1) Set baud rate to match printer.

2) Position the reconfiguration straps as follows:

W60

W61 A rear

W62 I f of

W63 I kit

|o o]
loo|
|oo |
lo o I

s

If the printer requires RTS-CTS handshaking, remove the jumper from W62.

If the printer is a current loop device, remove the jumpers from W60, W61 and
W63 and place them on W57, W58 and W59.

3) Connect standard cable to the printer and SDK-2920 Design Kit.

4) Press RESET key on SDK-2920 Design Kit.

5-3

http://www.computer-museum.net

5ft*r.

SDK-2920 SI

P e r i p h e r a l In te r faces

Object Code Output Format

The object code generated by the development system assembler and the SDK-2920

is configured as follows:

Field 0: Record mark (frame 0 is always V)

Field 1: Record length (frames 1 and 2)
Field 2: Load address field (frames 3, 4, 5 and 6)

Field 3: Record type (frames 7 and 8)

Field 4: Data
Field 5: Checksum (frames 'data field* +1 and 'data field' +2))

The format of the object code is a series of records, each containing its record
length, type, memory load address, checksum, and data. The following figure
shows a typical output file in hexadecimal format. The data field contains binary
data when used with cassettes, and ASCII hexadecimal when used with a develop­
ment system.

(—RECORD MARK
•RECORD LENGTH

STARTING LOAD ADDRESS
RECORD TYPE

I DATA
CHECKSUM

10 0 0 0 0 0 0 F A F F F 7 'F B F F f F F 3 F 1 F 0 F 0 F E F 1 F 9 F 2 F 2 8~2
1 0 0 0 0 0 0 0 F 0 F 3 F 1 F 5 F 9 F 7 F F F 8 F 7 F 7 F D F 7 F F F C F 7 F 7 7 5
0 D 0 0 2 0 0 0 F 1 F D F 2 F C F 0 F 7 F C F F F 7 F D F F F F F 9 F A
0 0 0 0 0 0 0 1 F F END-OF-FILERECORD

Figu re 5-4,
Typical Output File in Hexadecimal Format 0238

http://www.computer-museum.net

SDK-2920 P e r i p h e r a l In te r faces

Cassette Interface

The cassette interface is located at the rear of the SDK-2920 System Design Kit (see
Figure 5-5). The lines consist of:

0
/

microphone f

ground—-

monitor/earphone

ground •

edge of
board

Figure 5-5. Casse t te In ter face Hookup Locat ions

The following steps are required to connect a cassette:
1) Connect the microphone and its ground on the cassette recorder to the

microphone terminals (MIC and GND) on the SDK-2920 System Design Kit and
connect the cassette monitor and its ground to the earphone terminals (EAR and
GND) on the kit.

2) Set the cassette volume level to mid point.

3) Verify the recorder has a cassette tape in place.

4) To read from cassette to SDK, use "play" mode. To write from SDK to
cassette, use "record" mode; allow time at the beginning of a tape for the tape
leader.

0 0 0

/ / /

5-5/5-6

http://www.computer-museum.net

http://www.computer-museum.net

CHAPTER 6
APPLICATIONS BOARD

The applications side functions independently from the development side. Separate
power connections are provided and space is available in the breadboard area for
additional power connections. This section will introduce the 2920 and discuss the
use of the applications side of the board.

INTEL j a p O O O O O Q l

o u r 3 OUT? CUT I

i °)i ° •; ° I; °

•Q-£—3~e aasog^r

O* 9»o0 p « »og © * ,»oo o *

VCO CLOCK
POTENTIOMETER

OUTPUT

ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo

O ooooooooooooooooooo
^ ooooooooooooooooooo

ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo _^_..-„«.„«
ooooooooooooooooooo BREADBOARD
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo

VREF
POTENTIOMETER C T ° 1

AREA

VCO CLOCK **&*•*
POTENTIOMETER ° S - ° " ' \Sr:°L°

IN2 It

S D K - 2 9 2 0

ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo
ooooooooooooooooooo USER
OOOOOOOOOOOOOOOOOOO n«fiTAn/4*rtp»
ooooooooooooooooooo BREADBOARD
OOOOOOOOOOOOOOOOOOO A D C A
OOOOOOOOOOOOOOOOOOO MHCA
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOO >"
OOOOOOOOOOOOOOOOOOO

Figure 6-1. Applications Side
0240

Example of 2920 Application

After a 2920 program has been developed and assembled, the user has two choices
of program verification.

http://www.computer-museum.net

Appl ica t ions Side

The first method uses the Intel SM2920 Simulator to simulate the execution of pro­
grams written for the 2920. The simulator requires as a minimum configuration an
Intellec development system (model 800 or Series II) with 64K RAM, TTY or CRT
for console input and output, and a single diskette drive. The simulator allows you
to use symbolic references for changing or displaying all 2920 registers, flags, and
user-named locations in program or data memory. The trace feature enables you to
see when and how selected signals are sampled and handled by your program. The
SDK-2920 uploads to the simulator.

The second method of program verification is testing the programmed 2920 in your
application by monitoring inputs and outputs. Component and lead positioning
was carefully chosen to provide a low noise environment. This leaves you free to
concentrate on your design without worrying about basic layout procedures.

Power Supplies

You will need +5 volts and -5 volts, ±5% for the 2920 signal processor and the 2912
digital filters, if used. Absolute power supply current requirements cannot be pre­
dicted since each user's application is different. The following table (Table 6-1) will
assist you in determining your power needs. Consider these values as minimums
and add a 20% safety margin. Remember to include other components you may add
to the board.

Tab le 6 -1 . P o w e r Requ i r emen t s

| One2920/74S04set

One 2912/74LS324 (or74LS624)
[set (multiply by up to 8)

+5 volts

60ma

80ma

-5 volts j

120ma

45nrta

1 CAUTION J

Be sure power supplies are turned off while connecting leads to the
application side.

See Appendix A for power connector diagram.

The power connector J2 comes with the analog and digital grounds independent
from one another. If you choose, you can strap the grounds together at J2 by
locating the two holes adjacent to J2, one next to the KEY and one next to pins 5
and 6. Insert one end of a short piece of bare wire into each hole and solder it into
place, thus connecting the two grounds together.

2920 Clock Inputs

The timing for the 2920 can be controlled by either an external clock or an external
crystal. A 5.000 MHz crystal has been provided with the SDK-2920 kit. If the full

http://www.computer-museum.net

Appl ica t ions Side

192 instructions are used in the 2920 program and the clock frequency is 5.000 MHz,
then the sampling frequency will be 6.5 KHz. If an external clock is used, input a
square waveform with levels from 0 to -5 volts.

CAUTION I

An external clock with a positive polarity waveform can destroy the
74S04. The 74S04 is an inverter used as a complementary driver for the
2920 clock inputs.

A resistor location, R130, is provided adjacent to the 74S04 for a convenient place to
terminate the coaxial line from the signal generator. Select a resistor close to the
characteristic impedance of the coax.

The maximum allowable clock frequency is determined by the 2920 suffix. See
Table 6-2.

Table 6-2. Maximum Clock Frequencies

2920-18;
2920-16;

5.0 MHz
6.67 MHz

Figure 6-2 shows the pads for connecting one of two crystals' leads or the output of
a 74S04 driver to the 2920 clock input. One 5.000 MHz crystal is supplied in your kit.
If you use an external frequency source to drive your 2920, be sure it is jitter-free to
prevent noise being introduced into your design.

(To

Figure 6-2. Clock Inputs
0241

http://www.computer-museum.net

Appl ica t ions Side

External Clock Configuration

A jumper from W31, A to W31, B and a jumper from W32, A to W32, B will connect
the 74S04 clock driver to the 2920 clock inputs.

Crystal Y1 Configuration

A jumper from W35, A to W35, B and a jumper from W36, A to W36, B will connect
Yl.

Crystal Y2 Configuration

A jumper from W33, A to W33, B and a jumper from W34, A to W34» B will connect
Y2.

BE SURE THAT ONLY ONE CLOCK SOURCE IS CONFIGURED AT A TIME.

Reference Voltage

The VREF circuit provides a low noise regulated voltage reference for the A /D and
the D/A converter on the 2920. The voltage at the VREF pin on the 2920 may be set
to greater than or equal to one volt or less than or equal to 2 volts. VREF determines
the input and output voltage range for the 2920. When VREF equals 2 volts then the
input and output voltage range is plus and minus 2 volts. If VREF is set to 1 volt
then the input and output voltage range is plus and minus 1 volt. VREF is
adjustable via a potentiometer located on the middle left edge of the SDK board.

Digital Outputs

If digital outputs are going to be used, then either Ml, M2 or both pins on the 2920
will have to be tied to -5 volts. The jumpers W29 and W30 configure M l and M2. In
the analog output mode, for example, Ml and M2 are both connected to +5 volts, i.e.,
W29, B is jumpered to W29, C and W30, B is jumpered to W30, C. Refer to the 2920
data sheet for further details on Ml and M2. When using digital outputs, pull up
resistors are required for TTL levels. The application side provides traces and
mounting holes for pull up resistors at W17, A and B through W24, A and B. Refer
to the application side schematic for details.

OF/ , EOP/ , and CCLK/ are 2920 digital outputs conveniently positioned adjacent
to the user's prototype area. These digital outputs have pull-up resistors provided as
part of your SDK-2920 kit.

Access To 2920 I/O Pins

If your application does not require 2912 digital filters on the input or output, your
SDK-2920 kit provides user's prototype areas for the input and output of the 2920.
These areas consist of groups of plated through holes on 0.1 inch centers and are
convenient for bread boarding your own circuit. Use board holes W37 B through
W40 B for 2920 inputs. Use board holes W25 B through W728 B for 2920 outputs (0-3).
Outputs 4 through 7 can be accessed at board holes W17 A through W20 A. Keep
your signal leads to the 2920 as short as possible and use coax where needed. Refer
to the application side schematic for details.

See Figure 6-3 for jumper pin arrangements allowing easy user access to the 2920.

6-4
http://www.computer-museum.net

SDK-2920 App l i ca t i ons S ide

I* _ „ _ rg3
B O O O O
A O O O O

W 2 I O O OOW25
W 2 2 0 G OOW26
W230 0 OOW27
W24QO OOW28

Figure 6-3. 2920 J u m p e r P i n s ©242

Input and Output Circuit Considerations

See Figure 6-1 for 2920 input components including BNC connectors and 2920 VCO
clock frequency adjustments.

If input signal frequencies approach the program sample rate, aliasing noise will
be introduced and may become apparent at the output. The Intel 2912 filter pro­
vides a convenient controllable solution. The two 2912Js supplied in your kit may be
used as two input filters, two output filters, or one of each. Soldering 16 pin DIPIC
sockets into the 2912 hole patterns will facilitate moving the 2912's as needed.

Each 2912 chip contains a transmit and a receive filter, as well as a power amp
stage. The user has the option of setting jumpers so that various combinations of
the two filters on each chip may be used. For example, to use both the transmit and
receive filters with the BNC connector for INO, connect point A to point B on the
following jumpers: W37, W44, W54, W55 and W56. For other possible configura*
tions, refer to the schematic of the Analog Execution Circuit. The advantages of
different configurations are discussed in the following section.

The 2912 transmit filters have a built in 3db gain that may be utilized by shorting
across resistors R70, R71, R72 and R73.

Us ing t h e 2912 a s an Ant i -Al ias ing and Recons t ruc t ion F i l t e r fo r t h e
2920.

When a continuous signal is sampled, higher frequency components are generated.
In addition to the original signal the sums and differences of the original signal
and the harmonics of the sampling frequency are generated. Assuming an input
spectrum F(jw) and a sampling frequency Fs, the output spectrum for square-topped
sampling FST G&) is found to be

F S T (jai) = sm i (tut/2)
J/2 F (j(cu-n^s)]

6-5

http://www.computer-museum.net

Appl ica t ions Side

From this equation, the gain is a continuous function of frequency defined by.

r sin (cut/2)

where r is the sample pulse width, t is time, T the sample period, and w the
frequency in radians per second.

A sampling theorem relating the minimum required sampling frequency to the
signal bandwidth can be stated as follows: if a signal F(t), a real function of time, is
sampled instantaneously at regular intervals, at a rate higher than twice the signal
bandwidth, then the sampled signal contains all the significant information of the
original signal.

To ensure that there is no aliasing distortion in the 2920, the 2912 is used as an anti­
aliasing filter to band limit the input signal before it is sampled. The band limited
signal is sampled by the 2920 and converted to a digital signal. Once the signal is in
digital form the 2920 can process it. After the 2920 has processed the signal it is
converted back to analog and sampled again. The sample is held for the entire
duration of the sample period. The 2912 can now be used on the output to
reconstruct the quantized output of the 2920 into a smooth continuous signal.

Before one can specify the requirements for an anti-aliasing and reconstruction
filter, one must first specify what distortion free dynamic range is needed. Once
this is known, the frequency components generated from sampling can be
attenuated, using the input and output filters, to the point where they do not distort
the signal within the distortion free dynamic range of the system. For example, if
the distortion free dynamic range of a 2920 application is 30 dB, then the input anti­
aliasing filter should attenuate all input frequencies greater than or equal to the
sampling frequency minus the bandwidth (Fs-BW) by greater than 30 dB. (See
Figure 6-4.) This way any aliasing distortion will be less than 30 dB within the
signal bandwidth and will not introduce any distortion within the dynamic range
of the system. For the reconstruction filter, if we assume that no aliasing distortion
has been introduced within the 2920 then all of the frequency components outside
of the signal bandwidth should be attenuated greater than 30 dB.

The transmit and receive filter each have about 30 dB of attenuation in the band
reject region. Therefore if the distortion free dynamic range is 30 dB or less, then
the transmit or receive filter of the 2912 can be used as an anti-aliasing input filter.
The receive filter can be used as the output reconstruction filter. However if the
distortion free dynamic range is greater than 30 dB then both the transmit and
receive filter will have to be cascaded together to be used as an anti-aliasing filter,
and another 2912, with both filters cascaded together, will be used for the receive
filter. In this configuration the 2912 will provide 60 dB of rejection, however, the
distortion free dynamic range will now be limited to 54 dB because of the 2920's
quantization noise.

For a 30 dB dynamic range, the user has a choice of using the transmit filter or the
receive filter. If notched frequencies are of importance to the application, then the
receive filter can be used for anti-aliasing. However, the receive filter has a x/sin(x)
response. The x/sin(x) response can be made negligible by using a one pole filter to
attenuate the gain added by the x/sin(x) equalization. The x/sin(x) response adds a
gain of about 2.5 dB at 3.3 KHz. The one pole filter can be selected to offset this
gain. This feature can be added to the output of the receive filter section of the input
2912s?as shown on the applications side schematic diagram. In this diagram, a 560
ohm resistor and a .068 micro farad cap are used. These values were chosen for the
case when the 2912 is operating at the designed bandwidth. If another bandwidth
is used, then this resistor and capacitor should be modified accordingly.

The power amp should be the final stage of the 2912 before going into the 2920.
When the 2920 is sampling, the input impedance is only 1.5K ohms. The power amp

6-6

http://www.computer-museum.net

SDK-2920 Appl ica t ions S ide

(AMPLITUDE)

OdB

ALIASED INPUT FILTER

DISTORTION
FREE DYNAMIC

RANGE

Figure 6-4. Al ias ing Cons idera t ions

(FREQUENCY)

0243

on the 2912 is able to drive this load. The input to the 2920 can be AC coupled with a
1 micro farad cap to eliminate the output offset of the power amp. If the 1 micro
farad cap is used, then the 150K ohm resistor must also be used to prevent the input
signal from floating.

Output Circuit Considerations

See Figure 6-1 for 2920 output components including BNC connectors and 2912
VCO clock frequency adjustments points.

Sample Program

The sample program uses INO and OUTO BNC connectors to produce the wave­
forms shown in Figure 6-5. The output signal indicated at point A in the figure has
a frequency of 1.6 KHz and is generated during the negative portion of the input
signal (5 MHz sine wave in the sample shown). The following steps set up the SDK
for sample program operation.

1. Power up the development side of the SDK and program the 2920 with the
sample program. (Remove the 2920 from the programming socket before
powering up.) The command sequence is as follows:

Key Display

RESET \

1 LOAD

m
HEI m
HE]
then
1 RESET 1

EDIT LOAD LIST CONV

2920=1 AUX=2 CASS=3

VERIFY 2920 SOCKET (CR)

READ=1 PROG/VER=2 CMPR=3

PRESS — CR — TO PROGRAM

2920 TRANSFER ACTIVE

062 = CHECKSUM (CR)

EDIT LOAD LIST CONV

2. Move the 2920 to the socket on the Application section.

6-7

http://www.computer-museum.net

Applications Side

3. Connect an input signal (oscillator) to the BNC input connector INO. This input
signal can be a sine wave, square wave, or any other waveform that goes both
positive and negative (see Figure 6-4).

4. Connect an oscilloscope to BNC output connector OUTO.

5. Set the input signal frequency to 100Hz.

6. Apply power to the Applications section of the kit.

7. The oscilloscope should display 5-millisecond bursts of 1.6 kHZ output (for 5
MHz input operation).

INPUT SIGNAL".

OUTPUT SIGNAL:

Figu re 6-5. Sample Program Input and Output Waveforms 0244

Sample Program Listing
0
1
2
3
4
5
6
7
8
9

10
11
12

408ACB
4044EF
7882CD
0066EB
0000FF
4882FB
6008D7
4882FB
4008DD
4482EF
7408EF
4244EF
4000EF

SUB
LDA
ADD
SUB
LDA
SUB
ABS
SUB
ADD
LDA
LDA
LDA
LDA

(13 through 17

Y00,
DAR,
Y00,
DAR,
Y01,
Y01,
Y01,
Y01,
Y01,
Y02,
Y02,
DAR,
Y00,

KP1,
Y00,
KP4,
DAR,
Y00,
KP4,
Y01,
KP4,
Y01.
KPO,
Y01,
Y02,
Y00,

are NOPs)

L01,
R00,
L01,
R00,
R00,
R00,
L01,
R00,
L01,
R00,
R00,
R00,
R00,

NOP
NOP
CNDS
INO
INO
NOP
CVTS
NOP
NOP
NOP
CNDS
NOP
NOP

18 8000EF LDA Y00, Y00, R00, OUTO

(19 through 23 are identical to 18)

24 4000EF LDA Y00, Y00, R00, NOP

... (25 through 187 are NOPs)

188 5000EF LDA Y00, Y00, R00, EOP,
189 4000EF LDA Y00, Y00, R00, NOP

... (190 through 192 are NOPs)

6-8

http://www.computer-museum.net

Applicat ions Side

2920 Socketing Procedure

CAUTiON I

Since the 2920 is a MOS device, care should be taken to prevent static
discharge from damaging it during handling.

I CAUTION I

Be sure power is turned off and supplies have discharged before insert­
ing or removing the 2920 from its socket or moving the locking handle to
its "up" position.

NOTE

The programming socket on the development side requires a different pro­
cedure from the application side socket. On the development side, the 2920
must be removed from the programming socket before powering the side up
or down.

The zero insertion force socket locking handle should always be up (perpendicular
to the board) before attempting to insert or remove the 2920. When inserting, 2920
pin 1 should go into the socket pin closest to the locking handle.

After the 2920 has been placed in the socket, move the locking handle down until it
seats parallel to the board. Moving the locking handle to its unlocked position while
power is applied may cause damage to the 2920.

6-9/6-10

http://www.computer-museum.net

\M
% > * • - * » -

'Jix.

% •

http://www.computer-museum.net

APPENDIX A
POWER REQUIREMENTS

The power for development board operation and applications board operation
utilizes separate connectors. The voltages needed for development are +5v and
+ 12v. Required operating voltages for the applications board are +5v and —5v.

DEVELOPMENT SIDE POWER REQUIREMENTS

VOLTAGE CURRENT COMMENTS

+5v ±5% 1 .OA needed for basic operation (Vcc)

+12 100 ma needed for basic operation (VI)

-12 100 ma needed for RS-232 interface (Vap1)

VOLTAGE CURRENT COMMENTS

+5v ±5% 300 mA needed for board as supplied (Vcc)

-5 ±5% 250 mA needed for board as supplied (Vap 2)

+5v ±5% 200mA needed for each 2912/74LS324 (or 74LS624) pair added (Vcc)

-5v ±5% 200mA needed for each 2912/74LS324 (or 74LS624) pair added (Vap 2)

Applications Side
Power Connector
Top View

DIG GND

KEY

DIG GND

+5V

ANA GND

ANA GND

-5V

1 l

2 (
3

4 ;

5

6

7

I r- - * , , - - T J 3
, LJ r- j

«_ _ ^ !

! „ . . zzm£imm "~ x . «j
i—'—"' Jr- "

[f7T,,T" — "T- -i

\ — ~ j "")

i—":£ i j
0245

Development Side
Power* Connector
Top View

0246

http://www.computer-museum.net

When power is applied correctly to the development side, the monitor is initiated to
display the following messages:

Display

SDK-2920 MONITOR VER x.y

EDIT LOAD LIST CONV

Comment

Held on display for a short period.

Held on display until a legal key is
pressed.

ICAUTJONI

Remove the 2920 from the programming socket while powering the
development side up or down.

http://www.computer-museum.net

APPENDIX B
COMMAND SUMMARY

r

I
1 (2920)

-CR- (socket check)

LUAU

2 (AUX)

1
J_(read) 2 (program/verify) j3_ (compare)

CR

3(CASSETTE)

XX (file number)

J— r
JJto SDK) 2 (from SDK)

CR

l (t o SDK) 2 (from SDK)

I -h
1 (object) 2 (source)

T T
CR CR

CONV

-f"
Bxxxx'(CR) Drxxxx(CR) CR (converts display)

1 (modify)

R*
r- HEX/ASM
r- RIGHT
I - LEFT
(-NEXT
h-PREV
h - INSERT
h - DELETE
h-LIST
«— (DATA)

2 (clear)

0247

B-l/B-2

http://www.computer-museum.net

http://www.computer-museum.net

APPENDIX C
ERROR MESSAGES

Display

ILLEGAL ENTRY

ERR AT LOG XXX

CHECKSUM ERROR

XXX - FIELD INCORRECT

SYMBOL OVERFLOW

NO EOP

25v MISSING

STUCK BIT XXX

SELECT BAUD

ENTER NUMBER

Description

Keyboard entry illegal

2920 EPROM write failure at location XXX

Cassette or development system data failed block checksum

Assembler could not assemble field XXX

Symbol table full

EOP instruction not found before EPROM program

2920 EPROM program logic cannot detect 25v

Location XXX within the 2920 EPROM contains a bit which
is programmed in the opposite direction from the program
in memory.

Piace a jumper on one pair of the baud rate selection pins
and press RESET.

Normal CONV command prompt; also appears after an
illegal entry with CONV.

The following messages appear prior to programming the 2920 EPROM. After each
warning is displayed, press the CR key to continue or the "0" key to bypass error
checking. Warnings may not be fatal but should be understood before proceeding to
program the 2920 EPROM.

Display

EOP BOUNDARY
WARNING
WARNING

Description

EOP instruction not on address multiple of four

2 CNDX,SUB,DAR as destination

3 CNDS.SUB.DAR as destination

4 CVTX with DAR as destination

5 CVTS with DAR as destination

6 LIM with SHIFT

7 CNDX with AND, LIM, or ABS

8 CNDS with AND, LIM, or ABS

9 OUT instruction follows DAR as destination

10 OUT instruction follows CNDX, SUB

11 OUT instruction follows CNDS, SUB

12 CVTX follows DAR as destination

13 CVTS follows DAR as destination

14 CVTX follows CNDX, SUB

15 CVTS follows CNDX, SUB

16 CVTX follows CNDS, SUB

17 CVTS follows CNDS, SUB

18 CVTX follows CVTX

19 CVTS follows CVTX

20 CVTX follows CVTS

21 CVTS follows CVTS

22 CVTX follows IN

23 CVTS follows IN

C-l/C-2

http://www.computer-museum.net

http://www.computer-museum.net

i p***̂

APPENDIX D
TWO'S COMPLEMENT DATA

HANDLING IN THE 2920

t

Data in the 2920 are stored using a two's complement binary form. Using this form,
the highest order bit indicates the sign of the value, with this bit being zero (0) for
positive and zero values, and one (1) for negative values. If the intended value is
positive, the remaining bits correspond to that value, independent of the sign bit. If
the intended value is negative, then the remaining bits correspond to the number
(one minus that value).

A convention used with the 2920 places an imaginary binary point just to the right
of the highest order (25th) bit, as shown below:

1.011010111001 111110000100

Each bit to the right of the binary point has a positive fractional weight associated
with it, the first having the value 2~l = Vit the second 2"2 = lAy and so on. If x is the
number represented by the bits to the right of the binary point, then 0 < x < 1.0. If s
represents the sign bit (0 for non-negative values, 1 for negative), then the M l 25-bit
number represents the value - s + x.

Two's complement arithmetic is used because it allows relatively simple hardware
realizations of arithmetic functions. Addition in two's complement follows normal
binary addition rules, and can be realized using standard adder building blocks. If
two numbers of like sign bit are added and the sign bit of the result differs from that
of the original operands, the result is too large in magnitude to be contained within
the allotted number of bits. In this case an "overflow" is said to have occurred.

Subtraction in two's complement arithmetic may be done by adding the two's
complement of the subtrahend. The two's complement of a number is formed by
first taking the one's complement and then adding a 1 in the lowest order position.
The one's complement is formed by complementing all bits in place, i.e., replacing
all original zeroes with ones, and all original ones with zeroes. {Note that the
number -1.0 has no valid two's complement in the 25-bit number system used.) In
practice, subtraction is accomplished by adding the one's complement, and forcing
a carry input into the lowest order adder stage — which is equivalent to adding a 1
in the lowest order position.

Using two's complement arithmetic therefore simplifies addition and subtraction
as compared with sign/magnitude representation in that no sign bit testing of
either operand is necessary to set up for addition or subtraction. Only one set of
adders is needed because the conversion from one's complement to two's can be
achieved within the adder.

Multiplication and division by powers of two corresponds to shifts left or right
respectively. When shifting left, the low order bit is filled with zeroes and when
shifting right, the high order bit is filled with the sign bit. To extend precision to the
left, the sign bit is extended into each added position before any shift operations are
done. The sign bit behaves as if it extends to the left on to infinity. Overflow cor­
responds to the case where the recorded sign bit does not correspond to the sign bit
at infinity^

In the 2920, arithmetic is performed with a left extension to a total of 28 bits,
adequate to perform any 2920 operation without possibility of overflow. Thus the
highest order bit corresponds to the sign bit at infinity. If the storable portion of the
result (low 25-bits) does not correspond to the correct result, a n overflow is
indicated, and if overflow limiting is enabled, the 25-bit value stored is the positive
extremum (if the correct sign bit was 0) or the negative extremum (if the correct sign
bit was 1).

D-l

http://www.computer-museum.net

ii~&flXi&.«?.itZ;:t*wvHZiii&»lsZr2jC%>t.*,^>^ - K m ^ - i ^ - w i i ^ . ^ ^ .

Appendix D
SDK-2920

positive extremum = 0.1111 1111 1111 1111 1111 " " = a PP r a x - + 1 - °

negative extremum = 1.0000 0000 0000 0000 0000 0000 = -1.0

In two's complement arithmetic, multiplication can be performed in a manner
similar to that used for positive binary numbers. However, because the sign bit has
a negative rather than a positive weight, some additional corrections are needed.

Multiplication in the 2920 may be achieved using the conditional add with the
multiplier being loaded into the DAR, and the multiplicand being conditionally
added to the (partial) product. Because adds in the 2920 provide for sign extension
during shifting, a positive multiplier can produce a correct product without any
further correction, shown in the examples below.

1111.11 (-'A)
x 0000.11 (+%)

...1111.111

...1111.1111

...11111.1101 = -1 + 13/16 = -3/16

Note that in each case, the sign bit was extended to the left in the partial products.
The example shown above is drawn in a manner different from that used m grade
school arithmetic classes. The somewhat different display results from noting that
each bit of the multiplier to the right of the binary point has a weight equal to some
negative power of 2, i.e., is equivalent to a right shift of one or more positions.

0.1100 (3/4)
x 0.1101 (13/16)

0000.01100
0000.001100
0000.0000000
0000.00001101

00000.10011101

Thus if the multiplication is done starting at the binary point of the multiplier, and
running through the multiplier from left to right, the binary point can be
maintained (and aligned) for each partial product. Each bit of the multiplier corre­
sponds to a possible addition of the multiplicand, shifted to the right by one or more
positions, to the product. If the multiplier bit is a 1, the addition takes place, other­
wise it does not take place.

If the sign bit of the multiplier is non-zero, because this bit has a negative-weight
the multiplicand should be subtracted from the product. In the 2920 this function is
achieved by complementing the multiplicand, and conditionally adding the
resulting complement to the product based on the sign bit of the multiplier.

Division tends to be complex in two's complement arithmetic, and so may be
simplified bv extracting the signs of the operands, performing the division using
only the magnitudes of the dividend and divisor. The quotient is converted to the
proper sign based on the extracted signs.

Restoring binary division is performed using a series of test subtractions of the
divisor from the dividend, with the original value restored if the result becomes
negative. The sequence of test subtractions proceeds from left to right, with each
successful subtraction (one leaving a positive difference, thus not requiring restora­
tion) reducing the magnitude of the dividend. The locations of the successful sub­
tractions are noted by ones, those unsuccessful by zeroes, in the DAR.

Restoration of the dividend corresponds to adding the divisor back to the dividend.
Because this operation is followed by a test subtraction with the divisor shifted one

D-2

i*s^M*?

http://www.computer-museum.net

SDK-2920 Appendix D

position further right, the restoration/test subtraction sequence can be replaced by
a single addition of the divisor after it is shifted to the right. (As a right shift is
equivalent to a multiply by 1/2, the first sequence is +d-d/2 - d/2; the second
operation is +d/2.)

In the 2920, the conditional subtract operation is used to perform this non-restoring
divided algorithm. For any arithmetic operation, the high order from the extended
arithmetic is saved for possible testing by the conditional subtract instruction. This
carry has the same value as the sign of the result generating it, i.e., 1 for negative, 0
for non-negative numbers. The conditional subtract performs the addition or sub­
traction required by the previous result (i.e., carry), and then stores the new result of
the operation in a designated location (bit) of the DAR as selected by the condition
code used.

D-3/D-4

http://www.computer-museum.net

http://www.computer-museum.net

APPENDIX E
DISCUSSION OF CARRY

AND OVERFLOW CONDITIONS

The detailed ramifications of carry and overflow are discussed in this appendix.
The tables show the three major forms and the possible cases in each.

Overflow occurs when ALU operations produce numbers outside the legal range of
-1.0 ^ x < + 1.0.

Normal standard carry logic applies to the ALU instructions ADD, SUB, ABA,
LIM, AND. For the instructions XOR, ABS, and LDA, the carry logic includes addi­
tional considerations.

Normal Carry and Overflow

The 2920 standard representation of data is a signed 25-bit binary fraction. Posi­
tive data can be considered simply 24-bit fractions with a s ign bit, e.g.,
0.100000000000000000000000 means +1/2. Negative data have a sign bit of 1 with
the remaining 24 bits representing the two's complement of the value, Le., one
minus that value. An example:

1.010000000000000000000000 means -3/4.

However, the capacity to shift left two positions makes it necessary to allow for a
26th and 27th bit for the sign. A 28th bit is necessary to preserve the sign in the case
of carry information if two numbers are left-shifted and then added.

Therefore, the 2920 logic carries 28 bits, four bits to the left of the imaginary binary
point and 24 bits to its right:

ssss.bbbb bbbb bbbb bbbb bbbb bbbb

If the source operand is to be negated during an instruction, then before the
indicated operation is carried out, the one's complement of the source is formed by
complementing all its bits and setting the carry-in bit to one. This happens in three
circumstances: in taking the absolute value of a negative number, in an uncondi­
tional subtraction, or in a conditional subtraction when the prior carry was 0.

Standard carry, then, is propagated to the left, beginning at the least-significant
(right-most) bit and continuing into the sign bits if necessary. Carry into the sign
bits may mean an overflow condition, since in overflow the four sign bits become
unequal. The leftmost bit of the source operand always retains the original sign
even if shifting occurs.

Normal practice is to keep the numbers scaled between -1.0 and +1.0, such that the
arithmetic operations do not create values outside this range. If out-of-range values
do result, this is an overflow situation.

Conditional I/O codes do not affect carry and overflow for standard carry instruc­
tions (except conditional subtract). The calculation acts as if a straight add were
being done: if a carry into the sign bit occurs, then the carry flag is set. (Subtraction
is performed as an add after taking the two's complement of the source operand and
setting carry-in to 1.)

LIM produces a +1.0 or a -1.0 using the sign of the source only, and sets the carry to
0. Overflow for LIM depends on whether a left-shift occured. When overflow limit­
ing is enabled and an overflow condition occurs on an ADD, ABS, or ABA instruc­
tion, the result is limited, i.e., becomes -1.0 or +1.0 (This never applies to AND.)

http://www.computer-museum.net

Appendix F

The source operand is also a six-bit address pointing into RAM. Each address bit is
located as follows:

BIT O(LSB)
1
2
3
4
5(MSB)

AO
A1
A2
A3
A4
A5

The source operand constant multipliers have opcodes as follows:

KP7
KP6
KP5
KP4
KP3
KP2
KP1
KPO

110111
110110
110101
110100
110011
110010
110001
110000

KM1
KM2
KM3
KM4
KM5
KM6
KM7
KM8

111111
111110
111101
111100
111011
111010
111001
111000

Shift Code Field

S3

0
0
0
0
0
0
0
0
1
1
1

S2

1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1

S1

0
1
1
0
0
1

1
0
0
1
1
0
0
0
1
1

so
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Mnemonic

R13
R12
R11
R10
R09
R08
R07
R06
R05
R04
R03
R02
R01
L01
L02
R00

F-2

http://www.computer-museum.net

SDK-2920 Appendix F

Input/Output Code Field
The field is located in bits 23-19 and is encoded in the following manner:

MSB LSB
ADF1 ADFO ADK2 ADK1 ADKO Mnemonic

0
0
0
0
0
0
0
0

0

0

1

1

1

1

0
0
0
0
0
0
0
0

1

1

0

0

1

1

0
0
0
0
1
1
1
1

0

1

0

1

0

1

0
0
1
1
0
0
1
1

0
•
•
•
1

0
•
•
•
1

0
•
•
•
1

0
1
0
1
0
1
0
1

0

1

0

1

0

1

INO
IN1
IN2
IN3
NOP
EOP
CVTS
CNDS

OUTO
•
•
•

OUT7

CVTO
•
•
•

CVT7

CNDO
•
*
•

CND7

F-3/F-4

http://www.computer-museum.net

http://www.computer-museum.net

APPENDIX G
HEXADECIMAL/BINARY

CONVERSION TABLE

POWERS OF 16 (IN BASE 10)

16" n 16"n

1
17

281
503
057
921

4
68

099
592
474
599
594
504

* 1
16

268
294
719
511
186
976
627
037
606

4
65

048
777
435
967
476
627
044
710
370
927
846

1
16

256
096
536
576
216
456
296
736
776
416
656
496
936
976

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1.00000
0.62500
0.39062
0.24414
0.15258
0.95367
0.59604
0.37252
0.23283
0.14551
0.90949
0.56843
0.35527
0.22204
0.13877
0.86736

00000
00000
50000
06250
78906
43164
64477
^90298
06436
91522
47017
41886
13678
46049
78780
17379

00000
00000
0000

00000
25000
06250
53906
46191
53869
83668
72928
08080
80050
25031
78144
88403

00000 x 10c

00000 x 10
0000 x 10

00000 x 10
00000 x 10
00000 x 10
25000 x 10"
40625 x 10
62891 x 10
51807 x 10
23792 x 10
14870 x 10
09294 x 10
30808 x 10
56755 x 10
54721 x 10

POWERS OF 10 (IN BASE 16)

10" 10'n

3
23

163
DEO

2
17

EB
918

5AF3
BD7E
8652
457B
B6B3

1
F

98
5F5

3B9A
540B
4876

D4A5
4E72
107 A

A4C6
6FC1
5D8A
A764

1
A

64
3E8

2710
86A0
4240
9680
E100

CA00
E400
EB00
1000

ADOO
4000
8000
0000
0000
0000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1.0000
0.1999
0.2BF5
0.4189
0.68DB
0.A7C5
0.10C6
0.1AD7
0.2AF3
0.44B8
0.6DF3
O.AFEB
0.1197
0.1 C25
0.2D09
0.4B0E
0.734 A
0.B877
0.1272

0000
9999
C2BF
374B
8BAC
AC47
F7A0
F29A
1DC4
2FA0
7F67
FFOB
9981
C268
370D
BE7B
CA5F
AA32
5DD1

0000
9999
5C28
C6A7
71OC
1B47
B5ED
BCAF
6118
9B5A
SEF6
CB24
2DEA
4976
4257
9D58
6226
36A4
D243

0000
999A
F5C3
EF9E
B296
8423
8D37
4858
73BF
52CC
EADF
AAFF
1119
81C2
3604
566D
FOAE
B449
ABA1

x 16°
x 16°
x 16"'
x 16"2

x 16~3

x 16"4

x 16"4

x 16~5

x 16"®
x 16"7

x 16"®
x 16"9

x 16"9

x 16"'(

x 16"'
x 16"''
x 16"'*
x 16""
x 16"15

G-l/G-2

http://www.computer-museum.net

http://www.computer-museum.net

INDEX

COMMAND INDEX PAGE

Clear Command 3-3
Compare 2920 EPROM 3-13
Convert Binary to Decimal 3-19
Convert Decimal to Binary . 3-20
Hex Edit 3-7
LIST 3-10
Loading Programs 3-9
Modify Command 3-4
Program/Verify 2920 EPROM . 3-12
Read Object Data from Cassette 3-17
Read Object Data from Development System 3-14
Read 2920 EPROM 3-11
RESET . 3-3
Symbolic Edit 3-4
Transfer Object Data to Development System .,. 3-15
Transfer Source Data to Development System . 3-16
Transmit Object Data to Cassette 3-18

TEXT INDEX PAGE

Band Rate Selection 5-2
Carry . E-l
Command Summary B-l
Conversion Tables . . . G-l
EOP 4-7
Editing 3-4
Error Messages C-l
Instruction Memory 3-2
Object Code Output Format 5-4
Overflow E-l
Sample Program . . . ' — . 6-7
Serial Interface 5-1
Simulator 6-2
Specifications 1-2
Power Requirements A-l
Two's Complement Data Handling D-l
Uses for SDK-2920 Design Kit 1-1

Index-l/Index-2

http://www.computer-museum.net

http://www.computer-museum.net

